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In this paper, the convergence of the cascade algorithm in a Sobolev space

is considered if the refinement mask is perturbed. It is proved that the cascade

algorithm corresponding to a slightly perturbed mask converges. Moreover,

the perturbation of the resulting limit function is estimated in terms of that of the

masks. # 2002 Elsevier Science (USA)

Key Words: cascade algorithm; Sobolev space; joint spectral radius; perturbation

of refinable functions.
1. INTRODUCTION

In this paper, we are concerned with the following problem: Given
a compactly supported multivariate refinable function f; how does
perturbation of its finite refinement mask affect the convergence of
the cascade algorithm? Further, if the cascade algorithm for the
perturbed mask also converges, how the resulting limit function is related
with f?
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We say that a compactly supported function f is M-refinable if it satisfies
a refinement equation

f ¼
X
a2Zs

aðaÞfðM � �aÞ; ð1:1Þ

where the finitely supported sequence a ¼ ðaðaÞÞa2Zs is called the refinement

mask. The s� s matrix M is called a dilation matrix. We suppose that its
entries are integers and that limk!1 M�k ¼ 0: Throughout the paper, we
assume that M is isotropic. This means that there is an invertible matrix L
such that

LML�1 ¼ diagðs1; . . . ;ssÞ

with js1j ¼ � � � ¼ jssj ¼ m1=s ¼ RðMÞ; where m :¼ jdetM j and RðMÞ is the
spectral radius of M :

Let the Fourier transform #ff of a function f 2 L1ðR
sÞ be defined by

#ff ðoÞ :¼
Z
Rs
f ðxÞe�ix�o dx; o 2 Rs;

where x � o denotes the inner product of two vectors x and o in Rs: The
Fourier transform is naturally extended to the space of all compactly
supported distributions. We can rewrite Eq. (1.1) as

#ffðMToÞ ¼ HaðoÞ #ffðoÞ; o 2 Rs; ð1:2Þ

where the refinement mask symbol

HaðoÞ ¼
1

m

X
a2Zs

aðaÞe�io�a; o 2 Rs

is a (multivariate) trigonometric polynomial.
Looking at the refinement equation (1.1) as a functional equation, one

can give necessary and sufficient conditions for the mask a to ensure
existence, uniqueness and regularity of the solution fa (see e.g. [1] for
M ¼ 2I). Provided that X

a2Zs
aðaÞ ¼ m; ð1:3Þ

there exists a unique compactly supported distribution fa with
#ffað0Þ ¼ 1 satisfying (1.1) (see e.g. [1, 22]). Throughout the paper,
we assume that condition (1.3) holds for the refinement masks
considered.
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Before posing the problem more explicitly, we need to review
some notations. For 14p41; the norm of LpðR

sÞ is denoted by jj � jjp:
Let

WpðR
sÞ :¼

LpðR
sÞ; 14p51;

CuðR
sÞ; p ¼ 1;

(

where CuðR
sÞ is the space of uniformly continuous and bounded

functions on Rs equipped with norm jj � jj1: Further, we use the convention
1=1 ¼ 0:

Let Zþ be the set of nonnegative integers and

Zs
þ :¼ fðm1; . . . ;msÞ 2 Zs : mi50 8i ¼ 1; . . . ; sg:

For any multi-integer m ¼ ðm1; . . . ;msÞ 2 Zs
þ; let jmj :¼ m1 þ � � � þ ms; m! :¼

m1! � � � ms! and xm :¼ xm1

1 � � � xmss : Further, Pn denotes the linear span of fxm :
jmj4ng: For two multi-integers m ¼ ðm1; . . . ;msÞ and n ¼ ðn1; . . . ; nsÞ; we say
n4m if ni4mi for all i ¼ 1; . . . ; s: For n4m; we use ðmnÞ to denote m!

ðm�nÞ!n!:
For n 2 Zþ; the Sobolev space W n

p ðR
sÞ is the set of all tempered

distributions f such that Dmf 2 WpðR
sÞ for jmj4n; where Dm ¼ Dm1

1 . . .Dms
s

and Dj :¼ @
@xj

ðj ¼ 1; . . . ; sÞ denote the partial derivatives. Clearly, W n
p ðR

sÞ is a
Banach space with the norm

jjf jjW n
p ðR

sÞ :¼
X
jmj4n

jjDmf jjp; 14p41:

Let E be a complete set of representatives of distinct cosets of the quotient
group Zs=MZs: Thus, each element a 2 Zs can be uniquely represented as
a ¼ eþMg; e 2 E and g 2 Zs: It is known that the cardinality of E is equal
to m ¼ jdetM j: Without loss of generality, we can assume that 0 2 E:

Denote by ‘ðZsÞ the space of all complex-valued sequences. Let ‘pðZ
sÞ be

the space of complex-valued sequences l ¼ ðlðaÞÞa2Zs such that jjljjp51;
where

jjljjp :¼

P
a2Zs

jlðaÞjp
� �1=p

; 14p51;

sup
a2Zs

jlðaÞj; p ¼ 1:

8>>><
>>>:

(Observe that the norms for WpðR
sÞ and ‘pðZ

sÞ both are abbreviated by
jj � jjp; the particular interpretation will always follow from the context.)

Denote by ‘0ðZ
sÞ the space of sequences of finite support. For l 2 l0ðZ

sÞ let
supp l :¼ fa 2 Zs : lðaÞ=0g:
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Given a compactly supported initial function f0 2 LpðR
sÞ; we

define a sequence ðfkÞk51 by iteration fk :¼ Qafk�1; k ¼ 1; 2; . . . ; where
Qa : LpðR

sÞ/LpðR
sÞ is the cascade operator associated with the finite

mask a;

Qaf :¼
X
b2Zs

aðbÞf ðM � �bÞ: ð1:4Þ

We say that the cascade algorithm converges for f0 in W n
p ðR

sÞ-norm
(14p41Þ if the sequence ðQk

af0Þk51 converges in W n
p ðR

sÞ-norm. In this
case, it has been proved in [3] that f0 is necessarily contained in the space

Wn :¼ ff 2 W n
p ðR

sÞ compactly supp: : Dm #ff ð2paÞ ¼ 0 8a 2 Zs=f0g; jmj4ng:

ð1:5Þ

The cascade operator Qa is closely connected with the subdivision operator

Sa : ‘0ðZ
sÞ ! ‘0ðZ

sÞ associated with the mask a;

SavðaÞ :¼
X
b2Zs

aða�MbÞvðbÞ; a 2 Zs:

Denoting ak :¼ Skad; where d is the impulse sequence given by dðaÞ ¼ 0 for
a 2 Zs=f0g and dð0Þ ¼ 1; we have a1 ¼ a and

akðaÞ ¼
X
b2Zs

ak�1ðbÞaða�MbÞ; a 2 Zs; k52: ð1:6Þ

It can easily be verified by induction (see [11]) that for f 2 LpðR
sÞ

Qk
af ¼

X
a2Zs

akðaÞf ðMk � �aÞ; k ¼ 1; 2; . . . : ð1:7Þ

The cascade algorithm plays an important role in computer graphics and
wavelet analysis. The convergence of the cascade algorithm has been studied
by many authors. Cavaretta et al. [1] already found necessary and sufficient
conditions ensuring that the subdivision scheme related to a finitely
supported refinement mask with dilation matrix M ¼ 2I uniformly
converges to a continuous limit function. In the L2-norm, the convergence
of the cascade algorithm has been shown by Strang [28] in the univariate
case, by Lawton et al. [23] in the multivariate case and by Shen [27] in the
general multivariate vector case. Jia [15] considered the convergence of
subdivision schemes in the univariate setting for general Lp-spaces; the
multivariate Lp-case is completely settled in Han and Jia [11]. For the
univariate vector case, we refer to Jia et al. [21] and to Micchelli and Sauer
[24, 25]. Convergence in W n

2 ðR
sÞ has firstly been discussed by Jia, et al. [19].
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For scalar subdivision schemes in Sobolev spaces, we also refer to Goodman
and Lee [6] and to Micchelli and Sauer [26]. The cascade algorithm in Besov
spaces has been considered by Sun [29]. Chen et al. [3] and Zhou [31] have
studied this problem in W n

p ðR
sÞ for 14p41:

In practice, one often has to handle perturbed refinement masks. In fact,
coefficients are generally irrational or rational numbers which need to be
truncated in floating point arithmetics. Heil and Collela [12] were the first,
who studied how such truncation affects the refinable function in the
univariate L1-case (see also [13]). Further discussions on the effect of
perturbed scaling coefficients in the univariate case can be found in [4, 30].
Villemoes even showed that, under certain conditions, membership of a
refinable function in a Besov class is stable under perturbations.

More recently, Han [7, 8] provided a sharp error estimate for multivariate
refinable functions in any Lp-norm. His idea has been adopted to perturbed
matrix masks in the univariate Lp-case by Han and Hogan [10].

In particular, Han could show the following result in [7, 8]: If the cascade
algorithm related to a mask a converges for f0 in Lp-norm, and if b is an
only slightly perturbed mask, i.e., jja� bjj15Z for a sufficiently small Z > 0;
and b satisfies the sum rules of order 1 (see Section 2 for the notion of sum
rules of order n), then the cascade algorithm associated with b also
converges for f0 in Lp-norm and we have

jjQk
af0 � Qk

bf0jjp4Cjja� bjj1; k51: ð1:8Þ

Here the constant C depends on the refinement mask a under consideration
as well as on p; 14p41: However, it is independent of the perturbed
masks b and k:

In this paper, we want to generalize the above result to cascade algorithms
converging in Sobolev spaces.

Compared with the Lp-case, we have to overcome some difficulties due to
the handling with function derivatives requiring another approach. In fact,
the proof of the main result is based on two new key ingredients.

The first basic idea to obtain the wanted estimate is the observation that
for some suitable initial function f0 the following inequality holds: There
exists a positive constant c with

X
jmj¼n

jjDmQk
af0jjp4cmðn=s�1=pÞk

X
jmj¼n

jjDmak jjp

for all k ¼ 1; 2; . . . (see Theorem 3.2). Here Dm denotes the mth difference
operator (see Section 2) and ak is the iterated subdivision operator applied
to d in (1.6).
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The second key ingredient for the wanted estimate is the inequality

jjDmak � Dmbk jjp4cjja� bjj1m
ð�n=sþ1=pÞk 8jmj ¼ n; k ¼ 1; 2; . . .

(see Lemma 4.3). The proof of this inequality requires exact analysis of the
connection between convergence and boundedness of ðQk

af0Þk50 (resp.
ðQk

bf0Þk50) and the behavior of jjDmak jjp (resp. jjDmbk jjp) with jmj ¼ n; even
slightly extending the known results on convergence of cascade algorithms
in Sobolev spaces (see [3]).

In Section 2, we recall some important definitions and results from [3,11].
In particular, two equivalent characterizations of the convergence of
cascade algorithms in W n

p ðR
sÞ are given in terms of the joint spectral radius

and of the subdivision operator. In Section 3, we construct a special initial
function satisfying the above useful inequality. Further, an implicit relation
between the boundedness and convergence of a cascade algorithm in
different Sobolev spaces is established. Section 4 is devoted to the
generalization of (1.8) to Sobolev spaces.

2. JOINT SPECTRAL RADII

In the study of convergence of the cascade algorithm, the joint spectral
radius of linear operators is a useful tool. The uniform joint spectral radius
was employed in [5] to investigate the regularity of refinable functions. For
14p51; the p-joint spectral radius was introduced and applied to the
study of Lp-convergence of cascade algorithms by Jia [15]. We cite from [15]
the definition of p-norm joint spectral radius for the convenience of the
reader.

Let V be a finite-dimensional space with norm jj � jj: For a linear operator
A on V define

jjAjj :¼ maxfjjAvjj : jjvjj ¼ 1g:

Let A be a finite collection of linear operators on a finite-dimensional
vector space V : For a positive integer k; we denote by Ak the Cartesian
power of A:

Ak ¼ fðA1; . . . ;AkÞ : A1; . . . ;Ak 2 Ag:

Now let

jjAk jjp :¼

P
ðA1;...;Ak Þ2Ak jjA1 � � �Ak jjp

� �1=p
; 14p51;

maxfjjA1 � � �Ak jj : ðA1; . . . ;AkÞ 2 Akg; p ¼ 1:

8><
>:
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The p-norm joint spectral radius of A is defined to be

rpðAÞ :¼ lim
k!1

jjAk jj1=kp : ð2:1Þ

This limit indeed exists and does not depend on the choice of norm on V :
Moreover, we have

lim
k!1

jjAk jj1=kp ¼ inf
k51

jjAk jj1=kp : ð2:2Þ

Further, let for v 2 V

jjAkvjjp :¼

P
ðA1;...;Ak Þ2Ak jjA1 � � �Akvjjp

� �1=p
; 14p51;

maxfjjA1 � � �Akvjj : ðA1; . . . ;AkÞ 2 Akg; p ¼ 1:

8><
>:

Let us come back to our problem. For a finite refinement mask a;
we consider m operators Ae; e 2 E; on ‘0ðZ

sÞ defined by the biinfinite
matrices

Aeða;bÞ ¼ aðeþMa� bÞ; a;b 2 Zs: ð2:3Þ

Hence,

AevðaÞ ¼
X
b2Zs

aðeþMa� bÞvðbÞ; v 2 ‘0ðZ
sÞ: ð2:4Þ

Now, let A be the finite collection of Ae; e 2 E: There is a simple relation
between ak in (1.6) and the matrices Ae; e 2 E in (2.3). Let a 2 Zs and k be a
positive integer. Then there are (uniquely defined) e1; . . . ; ek 2 E and g 2 Zs

such that a ¼ e1 þMe2 þ � � � þMk�1ek þMkg and we have (see [11, Lemma
2.1])

akða� bÞ ¼ Aek � � �Ae1ðg; bÞ 8b 2 Zs: ð2:5Þ

For two sequences u 2 ‘pðZ
sÞ and v 2 ‘0ðZ

sÞ; the discrete convolution u*v 2
‘pðZ

sÞ is defined by

ðu*vÞðaÞ ¼
X
b2Zs

uða� bÞvðbÞ; a 2 Zs:

It follows from equality (2.5) that, for any v 2 ‘0ðZ
sÞ;

ðak *vÞðaÞ ¼ Aek � � �Ae1vðgÞ; ð2:6Þ



CHEN AND PLONKA140
with a ¼ e1 þMe2 þ � � � þMk�1ek þMkg and consequently for 14p51;

jjak *vjj
p
p ¼

X
e1;...;ek2E

jjAek � � �Ae1vjj
p
p ¼ jjAkvjjpp:

Let ej be the jth coordinate unit vector of Rs; j ¼ 1; 2; . . . ; s: Recall that
for any j ¼ 1; 2; . . . ; s and a function f defined on Rs; the difference operator
Dj is given by

Djf :¼ f ð�Þ � f ð� � ejÞ:

Analogously, let the difference operator Dj be defined for sequences l 2
‘ðZsÞ; by Djl ¼ lð�Þ � lð� � ejÞ: Further, for any m ¼ ðm1; . . . ;msÞ 2 Zs

þ;
denote Dm1

1 � � �Dms
s by Dm:

In order to give a characterization for convergence of the cascade
algorithm in W n

p ðR
sÞ-norm, we introduce the subspace

Vn :¼ v ¼ ðvðaÞÞa2Zs 2 ‘0ðZ
sÞ :
X
a2Zs

amvðaÞ ¼ 0; jmj4n

( )
: ð2:7Þ

Observe that Vn ¼ spanfDmdð� � bÞ : b 2 Zs; jmj ¼ nþ 1g; where d is the
impulse sequence. Furthermore, one can construct a finite set K � Zs such
that ‘ðKÞ is a finite subspace of ‘0ðZ

sÞ consisting of all sequences with
support on K with the following properties:

1. ‘ðKÞ is an invariant subspace under Ae for any e 2 E;
2. ‘ðKÞ contains Dmd; jmj ¼ nþ 1:

To this end, let supp a :¼ fa : aðaÞ=0g and O be a finite set of Zs such that
supp a[ f0g � O: Put H :¼ O� E þMZs

nþ1; where Zs
nþ1 :¼ fðm1; . . . ; msÞ 2

Zs; 04mi4nþ 1; 14i4sg: (Here, the set Aþ B (or A� BÞ consists of all
points xþ y (or x� yÞ with x 2 A and y 2 B:) Now, let

K :¼ Zs \
X1
k¼1

M�kH : ð2:8Þ

In particular, we have M�1ðK þ O� EÞ \ Zs � K: It is not difficult to see
that ‘ðKÞ is invariant under Ae; e 2 E; i.e. for v 2 ‘ðKÞ we have Aev 2 ‘ðKÞ (see
[11, Lemma 2.3]).

Then, in [3] the following has been shown:

Result 2.1 (Chen et al. [3]). Let a 2 ‘0ðZ
sÞ satisfy (1.3) and let Wn be

given in (1.5). The cascade algorithm associated with a converges for all
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functions f in Wn in W n
p ðR

sÞ-norm ð14p41Þ if and only if the following
conditions are satisfied:

(1) Vn is invariant under Ae 8e 2 E; i.e. for v 2 Vn it follows that Aev 2 Vn;
(2) rpðfAejVn\‘ðKÞ : e 2 EgÞ5m�n=sþ1=p; where K is given in (2.8).

Remark. (1) Condition (1) in Result 2.1 is a necessary condition on the
mask a; it needs to be satisfied if the limit function of cascade algorithm is
wanted to be in W n

p ðR
sÞ: Moreover, (1) is equivalent with the sum rules of

order nþ 1, saying that for any p 2 PnX
a2Zs

pðMaþ eÞaðMaþ eÞ ¼
X
a2Zs

pðMaÞaðMaÞ 8e 2 E: ð2:9Þ

This equivalence has already been shown in [18, Theorem 5.2] (see also [14,
Theorem 3.4.12]). We want to remark that condition (1), or equivalently, the
sum rules of order nþ 1 are also necessary for reproduction of polynomials
up to total degree n in the shift-invariant space SðfÞ generated by the integer
translates of the M-refinable function f (see [2, 17]).

(2) Condition (2) in Result 2.1 can be seen as a generalization of the result
in [11], where the convergence of cascade algorithms in Lp-spaces is shown.

Since K is a finite set, the p-norm joint spectral radius needs to be
determined only in the finite-dimensional space Vn \ ‘ðKÞ:

The following lemma justifies the definition of the set K in (2.8). Here, we
consider the action of operators Ae; e 2 E; on the sequences with supports
contained in any fixed finite set K1 � Zs:

Lemma 2.2. Let K be defined by (2.8). Then for any finite set K1 � Zs;
there is a positive integer j such that

Aej � � �Ae1v 2 ‘ðKÞ 8v 2 ‘ðK1Þ and e1; . . . ; ej 2 E: ð2:10Þ

Consequently, for any integer k > j

Aek � � �Ae1v 2 ‘ðKÞ 8v 2 ‘ðK1Þ and e1; . . . ; ek 2 E: ð2:11Þ

Proof. For any v 2 ‘ðK1Þ; we have supp Aev� M�1ðK1 þ O� EÞ \ Zs;
e 2 E: Iterative application yields for any integer j > 0

supp Aej � � �Ae1v � ðM�jðK1 þ O� EÞ \ ZsÞ

þ ðM�jþ1ðO� EÞ \ ZsÞ þ � � � þ ðM�1ðO� EÞ \ ZsÞ;

where O contains the support of a:
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Since M is isotropic, there is a constant c being independent of j such
that

jjM�jojj4cm�j=sjjojj 8o 2 Rs and j ¼ 1; 2; . . . ð2:12Þ

with m ¼ jdetM j > 1 (see e.g. [17, Lemma 6.1]). Therefore, we can find an
integer j such that, for all a 2 K1 þ O� E; M�ja 2 ð�1; 1Þs; i.e. M�jðK1 þ
O� EÞ \ Zs 2 f|; f0gg and (2.10) holds. Since ‘ðKÞ is an invariant subspace
under Ae for any e 2 E; (2.11) follows for any k > j: ]

There is a second way to characterize the convergence of the cascade
algorithm using the subdivision operator Sa:

Theorem 2.3. Let a 2 ‘0ðZ
sÞ satisfy (1.3). Then the cascade algorithm

associated with a converges for all functions in Wn in W n
p ðR

sÞ-norm ð14p41Þ
if and only if

lim
k!1

mkðn=s�1=pÞjjDmak jjp ¼ 0 8jmj ¼ nþ 1; ð2:13Þ

where ak ¼ Skad:

The proof of this theorem will be given in the next section.

3. DIFFERENTIAL AND DIFFERENCE OPERATOR

We now turn our attention to the norms jjQk
af0jjW n

p ðR
sÞ: The goal is to

estimate them in terms of sequence norms deduced from ak : In particular, we
shall show in this section that boundedness of ðQk

af0;nÞk51 (where f0;n is a
suitably chosen initial function in Wn) implies convergence of the cascade
algorithm on Wn�1 in W n�1

p ðRsÞ-norm.
Let f be a differentiable function on Rs and let D :¼ ðD1; . . . ;DsÞ

T with
Dj ¼ @

@xj
: Then, the chain rule for differentiation gives

Dðf ðMk �ÞÞðxÞ ¼ ðMT ÞkDf ðMkxÞ; x 2 Rs;

where MT is the transpose of M : Since M is isotropic, there exists
an invertible matrix L such that LMTL�1 ¼ diagðs1; . . . ; ssÞ: Hence, we
have

LDðf ðMk �ÞÞðxÞ ¼ diagðsk1; . . . ;s
k
s ÞLDf ðM

kxÞ:

Let qjðDÞ :¼ LjD; where Lj denotes the jth row of L ðj ¼ 1; . . . ; sÞ;
and for any m ¼ ðm1; . . . ;msÞ

T 2 Zs
þ; let qmðDÞ :¼ q1ðDÞm1 � . . . � qsðDÞms :
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Considering the last equation componentwisely, we have for any
f 2 W n

p ðR
sÞ

qjðDÞðf ðMk �ÞÞðxÞ ¼ skj ðqjðDÞf ÞðMkxÞ; j ¼ 1; . . . ; s;

and hence

qmðDÞðf ðMk �ÞÞðxÞ ¼ ðsm1k
1 � . . . � smsks ÞðqmðDÞf ÞðMkxÞ; x 2 Rs ð3:1Þ

(see also [19, 22, 31]).
It is easily seen that the operators qmðDÞ may be expressed as

qmðDÞ ¼
X
jnj¼jmj

cm;nDn;

where cm;n are determined by L and Dn ¼ Dn1

1 . . .Dns
s : Since L is invertible,

there exists a positive number k satisfying, for any f 2 W n
p ðR

sÞ;

k�1
X
jmj¼n

jðDmf ÞðxÞj4
X
jmj¼n

jqmðDÞf ðxÞj4k
X
jmj¼n

jðDmf ÞðxÞj; x 2 Rs:

Applying this equivalence and (3.1), we find for any f 2 W n
p ðR

sÞ

k�1mnk=s
X
jmj¼n

jðDmf ÞðMkxÞj4
X
jmj¼n

jDmðf ðMk �ÞÞðxÞj

4kmnk=s
X
jmj¼n

jðDmf ÞðMkxÞj; x 2 Rs and k ¼ 1; 2; . . . ;

where we have used that js1j ¼ � � � ¼ jssj ¼ m1=s: The second inequality has
been also proved in [17]. Hence, we obtain

Lemma 3.1. There is a positive number c such that for any nontrivial

f 2 W n
p ðR

sÞ

c�1mðn=s�1=pÞk4

P
jmj¼n jjD

mðf ðMk �ÞÞjjpP
jmj¼n jjDmf jjp

4cmðn=s�1=pÞk ; k ¼ 1; 2; . . . :

In these inequalities, the factor m�k=p is due to the change of variables
Mkx ! x in the norms.

For our considerations, we want to use a special initial function f0 which
is a tensor product of univariate B-splines. For k 2 Zþ; let Nk be the
univariate forward B-spline of degree k with the knots 0; 1; . . . ; k þ 1;
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recursively given by

Nk ¼ Nk�1 *N0 ¼
Z 1

0

Nk�1ð� � tÞ dt; t 2 R;

where N0 :¼ w½0;1Þ is the characteristic function of [0,1). Furthermore, for
n ¼ ðn1; . . . ; nsÞ 2 Zs

þ; let NnðxÞ :¼ Nn1
ðx1Þ � � �NnsðxsÞ; where x ¼ ðx1; . . . ; xsÞ

T 2
Rs:

Observe that for any pair of m and n 2 Zs
þ with m4n

DmNn ¼ DmNn�m: ð3:2Þ

A second important property of Nn in this context is the stability of its
shifts. This means that, for any n 2 Zs

þ; there is a positive number k; which is
independent of l; satisfying

k�1jjljjp4
X
a2Zs

jjlðaÞNnð� � aÞjjp4kjjljjp 8l 2 ‘pðZ
sÞ: ð3:3Þ

The functions Nn are appropriate candidates for the initial function in the
cascade algorithm. In fact,

f0;n ¼ Nðnþ1;...;nþ1Þ ð3:4Þ

is in Wn for any 14p41 (with Wn in (1.5)).

Theorem 3.2. Let l 2 ‘0ðZ
sÞ and let g be associated with l by

g ¼
X
a2Zs

lðaÞf0;nðM
k � �aÞ:

Then, there exists a constant k > 0 which is independent of l 2 ‘0ðZ
sÞ and

k 2 Zs
þ; such that

k�1mðn=s�1=pÞk4

P
jmj¼n jjD

mgjjpP
jmj¼n jjD

mljjp
4kmðn=s�1=pÞk ; k ¼ 1; 2; . . . : ð3:5Þ

In particular, if the sequence ðQk
af0;nÞk51 is bounded in W n

p ðR
sÞ; then there is a

constant c being independent of k such that

mkðn=s�1=pÞjjDmak jjp4c 8jmj ¼ n; k ¼ 1; 2; . . . : ð3:6Þ

Further, if the sequence ðQk
af0;nÞk51 converges in W n

p ðR
sÞ; then (2.13) holds.

Proof. For l ¼ ak ¼ Skad; the function g associated with l equals to Qk
a

f0;n by (1.7). If the sequence ðQk
af0;nÞk51 is bounded in W n

p ðR
sÞ-norm, then
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(3.6) follows from the first inequality in (3.5). If the sequence ðQk
af0;nÞk51

converges in W n
p ðR

sÞ; then there exists a compactly supported limit function
fa 2 W

n
p ðR

sÞ such that jjQk
af0;n � fajjW n

p ðR
sÞ ! 0 for k ! 1: Further, from

jjQk
af0;n � Qk

af0;nð� �M�kejÞjjW n
p ðR

sÞ

4jjfa � fað� �M�kejÞjjW n
p ðR

sÞ þ 2jjfa � Qk
af0;njjW n

p ðR
sÞ

for all unit vectors ej; j ¼ 1; . . . ; s we obtain thatX
jmj¼n

jjDjDmQk
af0;njjp ! 0 for k ! 1; j ¼ 1; . . . ; s:

Now again for l ¼ ak ; we have g ¼ Qk
af0;n and (2.13) follows from the first

inequality of (3.5) as before.
Let us now prove (3.5). Putting f ¼ gðM�k �Þ; we obtain by (3.2)

Dmf ¼
X
a2Zs

lðaÞDmNnð� � aÞ ¼
X
a2Zs

DmlðaÞNnð� � aÞ;

where n ¼ ðnþ 1 � m1; . . . ; nþ 1 � msÞ: Consequently,

Dmg ¼ ðDmf ÞðMk �Þ ¼
X
a2Zs

DmlðaÞNnðMk � �aÞ:

Therefore, the inequalities in (3.5) are true by Lemma 3.1 and the stability
property (3.3) of Nn: ]

Remark. The necessity of (2.13) for the convergence of the cascade
algorithm in W n

p ðR
sÞ has also been shown in [3, Lemma 4.3].

Now we are able to show the following relation.

Lemma 3.3. Assume that (2.13) is true for a given refinement mask a:
Then Vn in (2.7) is an invariant subspace under Ae for all e 2 E:

Proof. For e 2 E and m 2 Zs
þ; we define a polynomial pe;m 2 Pjmj by

pe;mðxÞ ¼
X
b2Zs

aðMbþ eÞðM�1ðx� eÞ � bÞm:

The space Vn is invariant under Ae for all e 2 E if and only if the mask a
satisfies the sum rules of order nþ 1 in (2.9). Hence, we have to show

pe1;m ¼ pe2;m 8e1; e2 2 E and 8m with jmj4n: ð3:7Þ
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For jmj ¼ 0; (3.7) has been proved in [11, Theorem 3.1]. We shall prove (3.7)
by induction on n0 with 04n04n: Assume that (3.7) holds for n05n: If it is
not true for n0 þ 1; then there are e1; e2 2 E and m 2 Zs

þ with jmj ¼ n0 þ 1 such
that pe1;m=pe2;m: We shall show that this contradicts (2.13).

For any m 2 Zs
þ and k ¼ 1; 2; . . . ; let hk;m 2 ‘0ðZ

sÞ be defined by

hk;mðaÞ ¼
X
b2Zs

akða�MbÞbm; a 2 Zs;

where ak are given in (1.6). Observe that for any e 2 E

h1;mðMaþ eÞ ¼ pe;mðMaþ eÞ 8a 2 Zs:

Thus, the induction assumption (3.7) for n0 implies that

h1;mðaÞ ¼ pe;mðaÞ 8m; jmj4n0; 8e 2 E and a 2 Zs:

Consequently, since pe;m 2 Pjmj we have Dgh1;m ¼ Dgpe;m ¼ 0 for jgj ¼ jmj þ 1
and jmj4n0; i.e., h1;m (jmj4n0) is a polynomial sequence of degree jmj:

Now, let jmj ¼ n0 þ 1: Since by assumption pe1;m=pe1;m for some e1; e2 2 E
and some jmj ¼ n0 þ 1; we have h1;mðMaþ e1Þ ¼ pe1;mðMaþ e1Þ 8a 2 Zs but
h1;mðMaþ e2Þ=pe1;mðMaþ e2Þ for some a 2 Zs: Hence, h1;mðaÞ cannot be a
polynomial sequence of degree n0 þ 1; i.e., there exist g0 2 Zs; jg0j ¼ n0 þ 2
and a 2 Zs such that

Dg0h1;mðaÞ=0: ð3:8Þ

On the other hand, relation (1.6) tells us that for a 2 Zs

hk;mðaÞ ¼
X
b2Zs

X
d2Zs

aða�Mb�MdÞak�1ðdÞðbþ d� dÞm

¼
X
n4m

m

n

 !
ð�1Þjm�njh1;nðaÞ

X
d2Zs

ak�1ðdÞd
m�n

¼
X
n5m

m

n

 !
ð�1Þjm�njh1;nðaÞ

X
d2Zs

ak�1ðdÞd
m�n þ h1;mðaÞ

X
d2Zs

ak�1ðdÞ:

Since
P

d2Zs aðdÞ ¼ m (see (1.3)), a simple induction argument gives
P

d2Zs

ak�1ðdÞ ¼ mk�1: Thus,

Dg0hk;mðaÞ ¼ mk�1Dg0h1;mðaÞ 8a 2 Zs: ð3:9Þ

It is easily seen by induction that supp Dgak � fa 2 Zs : jjajj14kmk=sg
for some constant k independent of k ¼ 1; 2; . . . : For any fixed a 2 Zs; let
Gk ¼ GkðaÞ :¼ Zs \M�1ða� suppDgakÞ; i.e., Gk denotes the support
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of Dgakða�M �Þ: Then, the cardinality of Gk satisfies

#Gk4k0mk ; k ¼ 1; 2; . . . ;

where k0 is a constant. For jmj ¼ n0 þ 1 and jgj ¼ n0 þ 2; it follows from
H .oolder’s inequality that

jDghk;mðaÞj ¼
X
b2Gk

bmDgakða�MbÞ

�����
�����

4
X
b2Gk

jjbjjðn0þ1Þq
1

 !1=q X
b2Gk

jDgakða�MbÞjp
 !1=p

4 c1mkðn0þ1Þ=smk=qjjDgak jjp

for some constant c1 dependent of a but not of k ¼ 1; 2; . . . ; where q satisfies
1=p þ 1=q ¼ 1: This together with (2.13) and (3.9) gives us that Dg0h1;mðaÞ

�� ��
tends to zero for k ! 1; in contradiction with (3.8). This completes the
induction process, thereby proving the assertion. ]

Proof of Theorem 2.3. The necessity of (2.13) for convergence of the
cascade algorithm has already been shown in Theorem 3.2. In order to show
sufficiency, we need to prove that conditions (1) and (2) of Result 2.1 follow
from (2.13). By Lemma 3.3, the sum rules of order nþ 1 are satisfied.
Further, by (2.6) and the definition of Vn in (2.7) we have for jmj ¼ nþ 1

lim
k!1

jjDmak jj
1=k
p ¼ lim

k!1
jjAkDmdjj1=kp ¼ rpðfAejVn\‘ðKÞ; e 2 EgÞ

(see [11, Theorem 2.5]). Hence, the assertion follows. ]

Finally, we obtain

Corollary 3.4. Assume that the sequence ðQk
af0;nÞk51 is bounded in

W n
p ðR

sÞ-norm. Then, the cascade algorithm corresponding to mask a converges

for every f 2 Wn�1 in W n�1
p ðRsÞ-norm.

Proof. Comparing (3.6) with (2.13) (for n� 1 instead of n), the assertion
directly follows from Theorem 2.3. ]
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4. PERTURBATIONS OF REFINEMENT MASKS

In this section, we shall show the convergence of the cascade algorithm
corresponding to a slightly perturbed refinement mask. Moreover, the
perturbation of the refinable limit function affected by the perturbation of
refinement mask is studied.

Theorem 4.1. Let O be a finite set of Zs: Assume that the cascade

algorithm corresponding to a 2 ‘ðOÞ converges for every f 2 Wn in W n
p ðR

sÞ-
norm. Then there is a positive number Z such that, for any b 2 ‘ðOÞ satisfying

(1.3), sum rules of order nþ 1 and jja� bjj15Z; the cascade algorithm

corresponding to b also converges for every f 2 Wn in W n
p ðR

sÞ-norm.

Proof. Recall that K is defined in (2.8). By assumption on a; it follows
from Result 2.1, that

lim
k!1

jjAk jVn\‘ðKÞjj
1=k
p ¼ inf

k51
jjAk jVn\‘ðKÞjj

1=k
p 5m�n=sþ1=p:

Hence, there exists an integer k51 and some positive t such that

max
v2Vn\‘ðKÞ

jjvjj¼1

X
e1;...;ek2E

jjAek � � �Ae1vjj
p5mð�n=sþ1=p�tÞkp :

Clearly, for this k; there is an Z > 0 satisfying that for any b 2 ‘ðOÞ with
jja� bjj15Z; we haveX

e1;...;ek2E

jjAek � � �Ae1 � Bek � � �Be1 jj
p5mð�n=sþ1=p�tÞkp :

Note that Vn \ ‘ðKÞ is an invariant subspace of any Ae and Be; e 2 E:
Consequently,

max
v2Vn\‘ðKÞ

jjvjj¼1

X
e1;...;ek2E

jjðAek � � �Ae1 Þv� ðBek � � �Be1 Þvjj
p5mð�n=sþ1=p�tÞkp:

It follows from the triangle inequality that

max
v2Vn\‘ðKÞ

jjvjj¼1

X
e1;...;ek2E

jjBek � � �Be1vjj
p5mð�n=sþ1=p�t1Þkp; ð4:1Þ

where the positive number t1 is defined by 2mð�n=sþ1=p�tÞkp ¼ mð�n=sþ1=p�t1Þkp:
Equality (2.2) tells us now

rpðfBejVn\‘ðKÞ : e 2 EgÞ4mð�n=sþ1=p�t1Þ5m�n=sþ1=p;

and the assertion follows from Result 2.1. ]
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So, in fact, the convergence of ðQk
bfÞk50 follows readily from the

continuity of the joint spectral radius rp:
Our goal is now to estimate the perturbation of the limit function in terms

of the perturbation of the mask, i.e., we want to show that

jjQk
af0 � Qk

bf0jjW n
p ðR

sÞ4cjja� bjj1; k ¼ 1; 2; . . . ;

where a; b meet the assumptions of Theorem 4.1. We use the initial function
f0 defined in (3.4). Then, choosing g ¼ Qk

af0;n � Qk
bf0;n; the second

inequality in (3.5) implies thatX
jmj¼n

jjDmQk
af0;n � DmQk

bf0;njjp4cmðn=s�1=pÞk
X
jmj¼n

jjDmak � Dmbk jjp:

Hence, we have to estimate the norm jjDmak � Dmbk jjp for jmj ¼ n:
In order to obtain this estimate we first need

Lemma 4.2. Assume that the masks a; b 2 ‘0ðZ
sÞ satisfy (1.3) and the sum

rules of order nþ 1 in (2.9). Then for any v 2 Vn�1; we have

ðBe � AeÞv 2 Vn 8e 2 E:

Proof. We claim that for any a satisfying sum rules of order nþ 1 and
any p 2 Pn; there is a polynomial q 2 Pn�1 such thatX

a2Zs
pð�aÞaðeþMa� bÞ

¼ pðM�1ðe� bÞÞ þ qðe� bÞ 8e 2 E and 8b 2 Zs: ð4:2Þ

In fact, it follows from Taylor’s formula that

pð�aÞ ¼
X
jmj4n

DmpðM�1ðe� bÞÞ
m!

ð�M�1ðMa� bþ eÞÞm:

Therefore,X
a2Zs

pð�aÞaðeþMa� bÞ

¼
X
jmj4n

DmpðM�1ðe� bÞÞ
m!

X
a2Zs

ð�M�1ðMa� bþ eÞÞmaðeþMa� bÞ:

Note that a satisfies (1.3) and (2.9), i.e., we have
P

a2Zs aðeþMa�bÞ ¼ 1 andX
a2Zs

ð�M�1ðMa� bþ eÞÞmaðeþMa� bÞ ¼
X
a2Zs

ð�aÞmaðMaÞ; jmj4n;
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for all e 2 E and b 2 Zs: Hence, we obtain

X
a2Zs

pð�aÞaðeþMa� bÞ

¼ pðM�1ðe� bÞÞ þ
X

05jmj4n

X
a2Zs

DmpðM�1ðe� bÞÞ
m!

ð�aÞmaðMaÞ:

This proves (4.2). Using (4.2) for b instead of a we get a polynomial g 2 Pn�1

such that

X
a2Zs

pð�aÞ ðbðeþMa�bÞ�aðeþMa�bÞÞ ¼ gðe�bÞ 8e 2 E and 8b 2 Zs:

For any v 2 Vn�1 and for any p 2 Pn; it follows by (2.4) that

X
a2Zs

pð�aÞðBe � AeÞvðaÞ ¼
X
b2Zs

gðe� bÞvðbÞ ¼ 0 8e 2 E:

The proof is complete. ]

Lemma 4.3. Suppose that O � Zs is a finite set and that the cascade

algorithm corresponding to a 2 ‘ðOÞ converges for every f 2 Wn in W n
p ðR

sÞ-
norm. Further, let b 2 ‘ðOÞ satisfy (1.3), the sum rules of order nþ 1 and

jja� bjj15Z; where Z is chosen such that the assertion of Theorem 4.1 holds.

Then, there is a positive number c such that we have

jjDmak � Dmbk jjp4cjja� bjj1m
ð�n=sþ1=pÞk 8jmj ¼ n and k ¼ 1; 2; . . . ;

where c is independent of b and k:

Proof. Let K be given in (2.8). By (2.6) and the equality

Bek � � �Be1 � Aek � � �Ae1 ¼
Xk
j¼1

Bek � � �Bejþ1
ðBej � AejÞAej�1

� � �Ae1 ;
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we obtain

jjðbk � akÞ*vjjp

¼
X

e1;...;ek2E

X
g2K

jBek � � �Be1vðgÞ � Aek � � �Ae1vðgÞj
p

 !1=p

4
Xk
j¼1

X
e1;...;ek2E

X
g2K

jBek � � �Bejþ1
ðBej � Aej ÞAej�1

� � �Ae1vðgÞj
p

 !1=p

;

where we have used that by Lemma 2.2 there is some integer k0 > 0 such that
both Aek . . .Ae1v and Bek . . .Be1v are in ‘ðKÞ for all k5k0:

Thus,

jjðbk � akÞ*vjjp4
Xk
j¼1

X
e1;...;ek2E

jjBek � � �Bejþ1
ðBej � Aej ÞAej�1

� � �Ae1vjj
p
p

 !1=p

:

ð4:3Þ

Let jmj ¼ n: Note that jjDmaj�1jj
p
p ¼

P
e1;...;ej�12E jjAej�1

� � �Ae1D
mdjjpp: Hence,

by (3.6) in Theorem 3.2, there is a constant c1 > 0 such that for any jX
e1;...;ej�12E

jjAej�1
� � �Ae1D

mdjjpp4c1mð�n=sþ1=pÞðj�1Þp: ð4:4Þ

On the other hand, from Dmd 2 Vn�1 and Lemma 4.2 it follows that

ðBej � Aej ÞAej�1
� � �Ae1D

md 2 Vn 8e1; . . . ; ej 2 E:

Moreover, by Theorem 4.1 we already know that the cascade algorithm
corresponding to b converges in W n

p ðR
sÞ-norm and by (4.1) there are a

positive number t1 and a constant c2 such thatX
ejþ1;...;ek2E

jjBek � � �Bejþ1
ðBej � Aej ÞAej�1

� � �Ae1D
mdjjpp

4c2mð�n=sþ1=p�t1Þðk�jÞp jjðBej � Aej ÞAej�1
� � �Ae1D

mdjjpp 8k > j:

This together with (4.4) implies by jjBej � Aej jj
p
p4jja� bjjp1X

e1;...;ej�12E

X
ejþ1;...;ek2E

jjBek � � �Bejþ1
ðBej � AejÞAej�1

� � �Ae1D
mdjjpp

4c3mð�n=sþ1=p�t1Þðk�jÞpmð�n=sþ1=pÞðj�1Þp jja� bjjp1 ;
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where c3 is some constant which is independent of b and k: It follows from
(4.3) that

jjðbk�akÞ*D
mdjjp4c1=p

3 jja�bjj1m
ð�n=sþ1=pÞðk�1Þ

Xk
j¼1

m�ðk�jÞt1 ; k¼ 1; 2; . . . :

Hence, the assertion follows. ]

We are now ready to present the main theorem of this section.

Theorem 4.4. Let O be a finite set in Zs: Assume that the cascade

algorithm corresponding to a 2 ‘ðOÞ converges for every f 2 Wn in W n
p ðR

sÞ-
norm. Then, there exists a positive constant Z such that, for any b 2 ‘ðOÞ
satisfying (1.3) and the sum rules of order nþ 1 with jja� bjj15Z; the cascade

algorithm corresponding to b converges for every f 2 Wn in W n
p ðR

sÞ-norm.

Moreover, there exists a constant c; which is independent of b and k; such that

jjQk
af0;n � Qk

bf0;njjW n
p ðR

sÞ4cjja� bjj1; k ¼ 1; 2; . . . ; ð4:5Þ

where f0;n is given in (3.4). Consequently, we find for the limit functions

jjfa � fbjjW n
p ðR

sÞ4cjja� bjj1: ð4:6Þ

Proof. By Theorem 4.1, we know that for b 2 ‘ðOÞ satisfying the sum
rules of order nþ 1 and with jja� bjj5Z for some suitable Z the cascade
algorithm corresponding to mask b converges for every f 2 Wn in W n

p ðR
sÞ-

norm. Therefore, fb 2 W
n
p ðR

sÞ: Since f0;n 2 Wn; the cascade algorithm
converges for f0;n for a and b; i.e., we have

lim
k!1

jjQk
af0;n � fajjW n

p ðR
sÞ ¼ lim

k!1
jjQk

bf0;n � fbjjW n
p ðR

sÞ ¼ 0:

Inequality (4.6) follows now from (4.5).
In order to prove (4.5), we appeal to Theorem 3.2. Put l ¼ Dmak � Dmbk in

(3.5). This corresponds to g ¼ Qk
af0;n � Qk

bf0;n: Then the second inequality
in (3.5) yields for some constant c1 and for k ¼ 1; 2; . . .X

jmj¼n

jjDmðQk
af0;n � Qk

bf0;nÞjjp4c1mðn=s�1=pÞk
X
jmj¼n

jjDmak � Dmbk jjp:

Together with Lemma 4.3, it in turn impliesX
jmj¼n

jjDmðQk
af0;n � Qk

bf0;nÞjjp4c2jja� bjj1; k ¼ 1; 2; . . . ; ð4:7Þ

where c2 is some positive number being independent of b and k:
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As shown in Corollary 3.4, the cascade algorithm corresponding to a also
converges for every f 2 Wn0 in W n0

p ðRsÞ-norm with n05n: Replacing n with n0

in (4.7) and then taking the sum of the resulting inequalities we obtain
(4.5). ]

We obtain the following corollary.

Corollary 4.5. Let O be a finite set in Zs: Suppose that fa is a refinable

function in W n
p ðR

sÞ corresponding to mask a 2 ‘ðOÞ and the shifts of fa are

stable. Then there are positive constants Z and c such that, for any b 2 ‘ðOÞ
satisfying (1.3), the sum rules of order nþ 1 and jja� bjj15Z; the refinable

distribution fb is in W n
p ðR

sÞ and satisfies (4.6).

Proof. By the stability of the shifts of fa; the cascade algorithm
corresponding to a converges on Wn in W n

p ðR
sÞ-norm. This conclusion has

been established in [19] for p ¼ 2: The method works for general p51:
Now, using Theorem 3.2, the proof is analogous to that of Theorem 4.4. ]

Remark. The proof of estimate (4.5) is strongly based on the second
inequality in (3.5). This inequality in turn has been shown for our initial
function f0 in (3.4) using relation (3.2). Since not every function f in Wn

satisfies the relation Dmf ¼ Dmg for some suitable g as in (3.2), the
arguments in this paper fail to work for a general initial function in Wn: This
difficulty has been overcome recently by Han [9]. In this paper, he
established inequality (4.5) for any initial function in Wn:
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