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In this paper, the convergence of the cascade algorithm in a Sobolev space
is considered if the refinement mask is perturbed. It is proved that the cascade
algorithm corresponding to a slightly perturbed mask converges. Moreover,
the perturbation of the resulting limit function is estimated in terms of that of the
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1. INTRODUCTION

In this paper, we are concerned with the following problem: Given
a compactly supported multivariate refinable function ¢, how does
perturbation of its finite refinement mask affect the convergence of
the cascade algorithm? Further, if the cascade algorithm for the
perturbed mask also converges, how the resulting limit function is related
with ¢?
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We say that a compactly supported function ¢ is M-refinable if it satisfies
a refinement equation

¢ = al@pM - —a), (1.1)

oeZ’

where the finitely supported sequence a = (a(®)),.z is called the refinement
mask. The s x s matrix M is called a dilation matrix. We suppose that its
entries are integers and that lim;_., M % = 0. Throughout the paper, we
assume that M is isotropic. This means that there is an invertible matrix A
such that

AMA™! = diag(oy, ..., 0y)

with |oi| = -+ = |os| = m'/* = o(M), where m = |det M| and o(M) is the
spectral radius of M. R
Let the Fourier transform f of a function f € L1(R’) be defined by

flw)= [ f@e ™ dx, wek,
.

where x - @ denotes the inner product of two vectors x and @ in R°. The
Fourier transform is naturally extended to the space of all compactly
supported distributions. We can rewrite Eq. (1.1) as

M w) = Hy(w)p(w), welR, (1.2)

where the refinement mask symbol

1 .
H,(w) = - Z a(o)e "7, welR

oeZ’

is a (multivariate) trigonometric polynomial.

Looking at the refinement equation (1.1) as a functional equation, one
can give necessary and sufficient conditions for the mask a to ensure
existence, uniqueness and regularity of the solution ¢, (see e.g. [1] for
M = 2I). Provided that

a(o) = m, (1.3)
>

oeZ’

there exists a unique compactly supported distribution ¢, with
$a(0):1 satisfying (1.1) (see e.g. [1,22]). Throughout the paper,
we assume that condition (1.3) holds for the refinement masks
considered.
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Before posing the problem more explicitly, we need to review
some notations. For 1< p<oo, the norm of L,(R’) is denoted by ||
Let

-

L, (R, 1< p<oo,
R =4 | P
C(RY),  p=o0,

where C,(R’) is the space of uniformly continuous and bounded
functions on R* equipped with norm || - ||,. Further, we use the convention
1/00=0.

Let Z, be the set of nonnegative integers and

2% = (g, .., u) €2 1 ;=0 Vi=1,...,s}.

For any multi-integer u = (iy,...,1) € Z%,, let |ul == p; +---+p, pl=

pi! - ug! and x = x| ---x%. Further, II, denotes the linear span of {x* :
|| <n}. For two multi-integers u = (y;,...,4,) and v=(v1,..., v) we say
v<pifvi<y; foralli=1,...,s. For v<u, we use (%) to denote m

For neZ,, the Sobolev space W”(IR’) is the set of all tempered
dlstrlbutlons f such that D* f e W, (R) for |u|<n, where D* = D" ... D!
and D; = p‘z (j=1,...,s) denote the partial derivatives. Clearly, W”([F\? ) isa
Banach space with the norm

I ey = D DAl 1< p<co.

lul<n

Let E be a complete set of representatives of distinct cosets of the quotient
group Z°/MZ°. Thus, each element o € Z° can be uniquely represented as
o=¢+ My, ¢ E and y e Z°. Tt is known that the cardinality of E is equal
to m = |det M|. Without loss of generality, we can assume that 0 € E.

Denote by £(Z°) the space of all complex-valued sequences. Let £,(Z") be
the space of complex-valued sequences 4 = (A(2)),ez= such that [[4]], < oo,
where

1/p
(Z Ii(oc)lp> , Isp<oo,
aeZ’

A, =

sup |[A(2)], p =00

oel’
(Observe that the norms for W,(R’) and ¢,(Z°) both are abbreviated by
Il -11,, the particular interpretation will always follow from the context.)

Denote by £y(Z°) the space of sequences of finite support. For 4 € [((Z°) let
supp 4 = {a € Z° : Ma) #0}.
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Given a compactly supported initial function ¢, e L,(R’), we
define a sequence (¢;),~, by iteration ¢, = Q¢ |, k=1,2,..., where
0. Ly(R)—L,(R") is the cascade operator associated with the finite
mask a,

Quf = alf)f(M -—p). (14)

pez®

We say that the cascade algorithm converges for ¢ in W} (R’)-norm
(1< p<o0) if the sequence (Q’;qﬁo)k>l converges in W;([Rs)—norm. In this
case, it has been proved in [3] that ¢, is necessarily contained in the space

W, ={fe€ W/’,’(R‘“) compactly supp. : D"f(2na) = 0 Vo € Z*\ {0}, |u|<n}.
(1.5)

The cascade operator Q, is closely connected with the subdivision operator
S, Lo(Z°) — €o(Z°) associated with the mask a,

Sav(@) =Y _ale— MPuw(B),  aeZ'.

pez’

Denoting a; := S¥5, where § is the impulse sequence given by () = 0 for
o€ Z°\{0} and 6(0) = 1, we have a; = a and

ar(o) = Z ar—1(P)a(o — MPp), ael’, k=2 (1.6)
pez’

It can easily be verified by induction (see [11]) that for f e L ,(R")

O f = aw)f(M* - —0), k=12, . (1.7)

aeZ’

The cascade algorithm plays an important role in computer graphics and
wavelet analysis. The convergence of the cascade algorithm has been studied
by many authors. Cavaretta et al. [1] already found necessary and sufficient
conditions ensuring that the subdivision scheme related to a finitely
supported refinement mask with dilation matrix M =2/ uniformly
converges to a continuous limit function. In the L;-norm, the convergence
of the cascade algorithm has been shown by Strang [28] in the univariate
case, by Lawton et al. [23] in the multivariate case and by Shen [27] in the
general multivariate vector case. Jia [15] considered the convergence of
subdivision schemes in the univariate setting for general L,-spaces; the
multivariate L,-case is completely settled in Han and Jia [I11]. For the
univariate vector case, we refer to Jia ef al. [21] and to Micchelli and Sauer
[24,25]. Convergence in W3 (R®) has firstly been discussed by Jia, et al. [19].
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For scalar subdivision schemes in Sobolev spaces, we also refer to Goodman
and Lee [6] and to Micchelli and Sauer [26]. The cascade algorithm in Besov
spaces has been considered by Sun [29]. Chen ef al. [3] and Zhou [31] have
studied this problem in W;(R‘g) for 1< p<oo.

In practice, one often has to handle perturbed refinement masks. In fact,
coefficients are generally irrational or rational numbers which need to be
truncated in floating point arithmetics. Heil and Collela [12] were the first,
who studied how such truncation affects the refinable function in the
univariate L.,-case (see also [13]). Further discussions on the effect of
perturbed scaling coefficients in the univariate case can be found in [4, 30].
Villemoes even showed that, under certain conditions, membership of a
refinable function in a Besov class is stable under perturbations.

More recently, Han [7, 8] provided a sharp error estimate for multivariate
refinable functions in any L ,-norm. His idea has been adopted to perturbed
matrix masks in the univariate L ,-case by Han and Hogan [10].

In particular, Han could show the following result in [7, 8]: If the cascade
algorithm related to a mask a converges for ¢, in L,-norm, and if b is an
only slightly perturbed mask, i.e., |la — b||; <# for a sufficiently small # > 0,
and b satisfies the sum rules of order 1 (see Section 2 for the notion of sum
rules of order n), then the cascade algorithm associated with b also
converges for ¢, in L,-norm and we have

105hy — Oboll,<Clla — bll;, k=1 (1.8)

Here the constant C depends on the refinement mask « under consideration
as well as on p, 1< p<oo. However, it is independent of the perturbed
masks b and %.

In this paper, we want to generalize the above result to cascade algorithms
converging in Sobolev spaces.

Compared with the L ,-case, we have to overcome some difficulties due to
the handling with function derivatives requiring another approach. In fact,
the proof of the main result is based on two new key ingredients.

The first basic idea to obtain the wanted estimate is the observation that
for some suitable initial function ¢, the following inequality holds: There
exists a positive constant ¢ with

> I Qioll, <em™VPEN " Ak,

lul=n lul=n

for all k=1,2,... (sce Theorem 3.2). Here 4" denotes the uth difference
operator (see Section 2) and «; is the iterated subdivision operator applied
to J in (1.6).
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The second key ingredient for the wanted estimate is the inequality
|44, — 4Byl <clla — bllym" PRy = n, k=1,2,...

(see Lemma 4.3). The proof of this inequality requires exact analysis of the
connection between convergence and boundedness of (Q§¢o)k>o (resp.
(Qﬁ‘ﬁo)k;o) and the behavior of |[4"a||, (resp. |[4"Dk||,) with |u| = n, even
slightly extending the known results on convergence of cascade algorithms
in Sobolev spaces (see [3]).

In Section 2, we recall some important definitions and results from [3,11].
In particular, two equivalent characterizations of the convergence of
cascade algorithms in W;}([RS) are given in terms of the joint spectral radius
and of the subdivision operator. In Section 3, we construct a special initial
function satisfying the above useful inequality. Further, an implicit relation
between the boundedness and convergence of a cascade algorithm in
different Sobolev spaces is established. Section 4 is devoted to the
generalization of (1.8) to Sobolev spaces.

2. JOINT SPECTRAL RADII

In the study of convergence of the cascade algorithm, the joint spectral
radius of linear operators is a useful tool. The uniform joint spectral radius
was employed in [5] to investigate the regularity of refinable functions. For
1< p<oo, the p-joint spectral radius was introduced and applied to the
study of L ,-convergence of cascade algorithms by Jia [15]. We cite from [15]
the definition of p-norm joint spectral radius for the convenience of the
reader.

Let V' be a finite-dimensional space with norm || - ||. For a linear operator
A on V define

41| = max{[|4v]| : [lol| = 1}.

Let .7 be a finite collection of linear operators on a finite-dimensional
vector space V. For a positive integer k, we denote by ./ the Cartesian
power of o7:

A ={(A1,...,AQ) Ay, ... Ay € A},

Now let

1/p
k (Z(Al ..... Ak)ewHAl"'Aka) , I<p<oo,
25|, =

max{||d; - Al : (41, ..., 4x) € ¥}, p = 0.
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The p-norm joint spectral radius of o7 is defined to be

ppld) = lim L7 2.1)

This limit indeed exists and does not depend on the choice of norm on V.
Moreover, we have

. kyl/k _ - ky1/k
Jim [l —gf; [EA (2.2)
Further, let forve V

1/p
.25 (Z(Al ..... Aﬁ)EJJA”Al"'AkUHp) , I<p<oo,
ul|, =
p

max{||d; - Aol : (A1,...,Ax) € Z*},  p=oc.
Let us come back to our problem. For a finite refinement mask a,

we consider m operators A, e€E, on (y(Z°) defined by the biinfinite
matrices

Ao, p) = ale + Ma — ), o, fe. (2.3)
Hence,
Av(@) = ale+ Mo— Po(B),  velo(Z°). (2.4)
per®

Now, let .o/ be the finite collection of 4., ¢ € E. There is a simple relation
between ay in (1.6) and the matrices 4,,¢ € E in (2.3). Let « € Z° and k be a
positive integer. Then there are (uniquely defined) ¢;,...,¢ € E and y € Z°
such that o = & + Mey + -+ + M* g, + M*y and we have (see [11, Lemma
2.1])

ar(e— ) = Ay -4, (0, ) VpeZ'. (2.5)

For two sequences u € £,(Z°) and v € {,(Z*), the discrete convolution u*v €
{p(Z°) is defined by

xv)(@) = > u(e—Pw(p), e’

pez’
It follows from equality (2.5) that, for any v € £y(Z°),

(arxv)(o) = A, - - As (), (2.6)
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with o = & + Mey + -+ + M* g, + M*y and consequently for 1< p<oo,

k
lagxolls =" Ay - Ay ol = [l oll5,

Let e; be the jth coordinate unit vector of R, j =1,2,...,s. Recall that
forany j =1,2,...,sand a function f defined on R’, the difference operator
4; is given by

A;f = O ACES ej)-

Analogously, let the difference operator 4; be defined for sequences A e
UZ%), by Aji = A-)— (- —e;). Further, for any u= (uy,...,u)eZ’,
denote A} --- A% by A*.

In order to give a characterization for convergence of the cascade
algorithm in W;([R{S)—norm, we introduce the subspace

V, = { v = (0(),ep € 0(Z°) Y av(@) =0, |u| <n}. 2.7)

oel’®

Observe that V, = span{4*o(- — f): fe Z°, |uf =n+ 1}, where J is the
impulse sequence. Furthermore, one can construct a finite set K < Z° such
that £(K) is a finite subspace of £y(Z°) consisting of all sequences with
support on K with the following properties:

1. £(K) is an invariant subspace under 4, for any ¢ € E;
2. {(K) contains A*S,|u| =n+ 1.

To this end, let suppa = {a : a(x) 20} and Q be a finite set of Z° such that
suppa U {0} c Q. Put H =Q—E+MZ, |, where Z, | = {(u,...,1)€
7°, 0 <n+ 1, 1<i<s}. (Here, the set 4+ B (or 4 — B) consists of all

points x + y (or x — y) with x € 4 and y € B.) Now, let
o0
K=7'n)_ M"H. (2.8)
=1

In particular, we have M~ (K + Q — E) n Z° c K. It is not difficult to see
that £(K) is invariant under 4,,¢ € E, i.e. for v € {(K) we have 4,v € £{(K) (see
[11, Lemma 2.3]).

Then, in [3] the following has been shown:

REsSULT 2.1 (Chen et al. [3]). Let a e €y(Z°) satisfy (1.3) and let W, be
given in (1.5). The cascade algorithm associated with a converges for all
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functions ¢ in W, in W;([Ris)—norm (1< p<o0) if and only if the following
conditions are satisfied:

(1) ¥V, isinvariant under 4, Ve € E, i.e. for v € V,, it follows that A.v € V;;;
() p,(4sly,nui) < € € EY)<m sV where K is given in (2.8).

Remark. (1) Condition (1) in Result 2.1 is a necessary condition on the
mask a, it needs to be satisfied if the limit function of cascade algorithm is
wanted to be in WI’,’(IRS). Moreover, (1) is equivalent with the sum rules of
order n + 1, saying that for any p e Il,

> Mo+ e)a(Ma+ &) =Y p(Ma)a(Ma) — Veek. (2.9)

oel’® oeZ’

This equivalence has already been shown in [18, Theorem 5.2] (see also [14,
Theorem 3.4.12]). We want to remark that condition (1), or equivalently, the
sum rules of order n + 1 are also necessary for reproduction of polynomials
up to total degree n in the shift-invariant space S(¢) generated by the integer
translates of the M-refinable function ¢ (see [2, 17]).

(2) Condition (2) in Result 2.1 can be seen as a generalization of the result
n [11], where the convergence of cascade algorithms in L ,-spaces is shown.

Since K is a finite set, the p-norm joint spectral radius needs to be
determined only in the finite-dimensional space V;, N €(K).

The following lemma justifies the definition of the set K in (2.8). Here, we
consider the action of operators 4., & € E, on the sequences with supports
contained in any fixed finite set K; < Z°.

LEmMA 2.2. Let K be defined by (2.8). Then for any finite set K| < Z°,
there is a positive integer j such that

Ay -+ Agv € U(K) Yvel(Ky) and e,...,¢€k. (2.10)
Consequently, for any integer k > j
Ay - Ay v € LK) Yve {(K;) and ¢,...,e €E. (2.11)

Proof. For any v e {(K;), we have supp 4,0 =« M~ (K| +Q — E) n Z°,
¢ € E. Iterative application yields for any integer j > 0

supp 4, -+ A, v < M/ (K| +Q—E)nZ
+ M7 Q-EYnZ)+--+ (M (Q—E)nZ,

where Q contains the support of a.
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Since M is isotropic, there is a constant ¢ being independent of j such
that

M7 o||<ecm™P|lo||  VYoeR' and j=1,2,... (2.12)

with m = |det M| > 1 (see e.g. [17, Lemma 6.1]). Therefore, we can find an
integer j such that, for all x e K} + Q — E, MJa e (—1,1), i.e. M7 (K| +
Q—E)nZ € {0,{0}} and (2.10) holds. Since £(K) is an invariant subspace
under A, for any ¢ € E, (2.11) follows for any k> ;. 1

There is a second way to characterize the convergence of the cascade
algorithm using the subdivision operator S,,.

THEOREM 2.3. Let a € €y(Z°) satisfy (1.3). Then the cascade algorithm
associated with a converges for all functions in W, in W) (R*)-norm (1< p<00)
if and only if

lim m "D\ gy, =0 Vi =n+1, (2.13)

k—o00

where ay = Sk6.

The proof of this theorem will be given in the next section.

3. DIFFERENTIAL AND DIFFERENCE OPERATOR

We now turn our attention to the norms ||Q§¢o||w;(w)- The goal is to
estimate them in terms of sequence norms deduced from a;. In particular, we
shall show in this section that boundedness of (Q’;%n)kzl (where ¢, is a
suitably chosen initial function in #;,) implies convergence of the cascade
algorithm on W, in W~ (R*)-norm.

Let f be a differentiable function on R* and let & = (D, ... ,D‘Y)T with
D; = a% Then, the chain rule for differentiation gives

2(f M) =MD 2 fM'y),  xeR,

where MT is the transpose of M. Since M is isotropic, there exists
an invertible matrix A such that AMTA™! = diag(ay,...,0,). Hence, we
have

AD(f(M*))(x) = diag(ah, ..., AD f(M*x).

Let q{(%):= A;2, where A; denotes the jth row of 4 (j=1,...,s),
and for any p=(u,....u)" €Z%, let qu2):=q (D" -... q(D)".
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Considering the last equation componentwisely, we have for any
e W)

DM = a5 (D NHM %), j=1,....5,

and hence

G DS MF))x) = (" - oY D) iMYx),  xeR (3.1)

(see also [19,22, 31]).
It is easily seen that the operators ¢,(%) may be expressed as

9 D) =Y D,

[vI=lul

where ¢, are determined by A and D' = D}'...D}s. Since A is invertible,
there exists a positive number x satisfying, for any f € W;’(R‘Y),

YD @IS Y gD f@I<e Y DN, xeR

|pl=n |pl=n |pl=n

Applying this equivalence and (3.1), we find for any f € W;([Ris)

Kt RIS D D M) @)

|l=n |ul=n

<km™SN (D' )MEy),  xeR and k=12,...,

|ul=n

where we have used that |o,| = - -- = |o,| = m'/*. The second inequality has
been also proved in [17]. Hence, we obtain

LeEmMMA 3.1. There is a positive number ¢ such that for any nontrivial
S e W (R)

k
Cflm(n/sfl/p)kgzwhn ||Dﬂ(f(M ))Hp

<cm(”/“71/p)k, k=12,....
Z\M:n ||D'uf”p

In these inequalities, the factor m~*/? is due to the change of variables
M*x - x in the norms.

For our considerations, we want to use a special initial function ¢, which
is a tensor product of univariate B-splines. For ke Z,, let N; be the
univariate forward B-spline of degree & with the knots 0,1,...,k+ 1,
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recursively given by
1
Ny = N1 %Ny = / Nkfl('—t)dl, teR,
0

where Ny = gy is the characteristic function of [0,1). Furthermore, for
v=_(v1,...,v) € Z°, let N,(x) == N, (x1)--- N, (x,), where x = (x1,...,x,)" €
R°.
Observe that for any pair of u and v e Z% with u<v
D*N, = 4"N,_,.. (3.2)

A second important property of N, in this context is the stability of its
shifts. This means that, for any v € Z° , there is a positive number , which is
independent of A, satisfying

K AL < D AN — 0l <klAl,  Vie (2, (3.3)

oeZ’®

The functions &, are appropriate candidates for the initial function in the
cascade algorithm. In fact,

Pon = Not1,.nt1) (3.4)

is in W, for any 1< p<oo (with W, in (1.5)).

THEOREM 3.2. Let . € £o(Z°) and let g be associated with J. by

g=">_ APy, (M" - —a).

oeZ’

Then, there exists a constant k >0 which is independent of 1 € €o(Z°) and
ke, such that

DX
K*Im(n/sfl/}?)k gzlu\:" || tnggKm(l’l/Sfl/P)k, k= 1, 2’ o (35)
E\,ul:n HA! i”p

In particular, if the sequence (Q%¢y )i is bounded in WJ(R), then there is a
constant ¢ being independent of k such that

mf TP Ay, <e Ylul=n, k=12,.... (3.6)
Further, if the sequence (Q§¢0,n)k>1 converges in W;’(IRS), then (2.13) holds.

Proof. For A= a; = S5, the function g associated with 4 equals to Q’;
¢o., by (1.7). If the sequence (Q’;¢0,n)k>1 is bounded in W,’](RS)-norm, then
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(3.6) follows from the first inequality in (3.5). If the sequence (Q§¢O,n)k>l
converges in W”(R’), then there exists a compactly supported limit function
¢, € W]’]([Rs) such that ||Q’;¢0’n — ¢a||W;(R") — 0 for k — oo. Further, from

1004 — Qabon(- — M el
—k
< ||¢a - d)a(' -M ej)”W,’}(IRS) + 2||¢a - Q](;d)(),nHWp"(R:)
for all unit vectors e;, j = 1,...,s we obtain that

> 14,04 Qho,ll, >0 for k> oo, j=1,....s.

lul=n

Now again for A = a;, we have g = Q’;qbo’n and (2.13) follows from the first
inequality of (3.5) as before.
Let us now prove (3.5). Putting f = g(M~*.), we obtain by (3.2)

Df =" H)AN( o) = > AUN(- — ),

=y oel’

where v=(m+1—py,...,n+ 1 — u,). Consequently,

D'g = (D" f)M*) = A*A@)N,(M* - ).

oeZ’

Therefore, the inequalities in (3.5) are true by Lemma 3.1 and the stability
property (3.3) of N,. 1

Remark. The necessity of (2.13) for the convergence of the cascade
algorithm in W;’([RS) has also been shown in [3, Lemma 4.3].

Now we are able to show the following relation.

LemwmA 3.3, Assume that (2.13) is true for a given refinement mask a.
Then V, in (2.7) is an invariant subspace under A, for all ¢ € E.

Proof. For eeE and u € Z',, we define a polynomial p;, € II), by

Peu@) = a(MB+ )M (x — &) — Y.

pez®

The space ¥, is invariant under 4, for all ¢ € E if and only if the mask a
satisfies the sum rules of order n + 1 in (2.9). Hence, we have to show

Perp = Dert Ver,ep € E and  Vyu with |u|<n. 3.7
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For |u| = 0, (3.7) has been proved in [11, Theorem 3.1]. We shall prove (3.7)
by induction on ny with 0 <ny<n. Assume that (3.7) holds for ny<n. If it is
not true for ny + 1, then there are &1, ¢; € E and p € Z°, with |u| = no + 1 such
that p,, , # p., . We shall show that this contradicts (2.13).

Forany peZ’ and k= 1,2,..., let h, € {o(Z’) be defined by

(@) =Y axe—MB)B',  weZ

pez*
where a; are given in (1.6). Observe that for any ¢ € E
hiy(Mo+ ) = py (Mo + ) VoeZ°.
Thus, the induction assumption (3.7) for ny implies that
hip(0) = pep(a) Yu, lu|<ng, VeeE and aeZ’.

Consequently, since p;, € IT|, we have A7h; , = A" p,,, = 0 for |p| = |u| + 1
and |u|<ng, i.e., b1y, (Jul<ng) is a polynomial sequence of degree |u|.

Now, let |u| = no + 1. Since by assumption p;, , # p;, , for some ¢, € E
and some |u| = no + 1, we have hy (Mo + &) = p; (Mo + &) Vo€ Z° but
hy (Mo + &) # pg, y(Mo.+ &) for some « € Z°. Hence, h () cannot be a
polynomial sequence of degree ng + 1, i.e., there exist y, € Z°, |yy| = no + 2
and o € Z° such that

A0k (2) #0. (3.8)

On the other hand, relation (1.6) tells us that for o € Z°

hig@) =Y > ale— MB — Mdar1(5)(B + 5 — )"

pez’® oz’

= Z(“ )(—1)“"h1,v(a)z ar-1(0)0"
v<u v oeZ*

=y (’“‘ )(—1)“-"h1,v(a)§j e 1(8)" " + hiy(@) Y ar1(9).
v<u\Y sez° sez°

Since Y s a(6) = m (see (1.3)), a simple induction argument gives » s ;s
ar_1(0) = mF 1. Thus,

A"/ohk)#(g() = mk71A7"’h1’M(O() VYo e Z°. (39)

It is easily seen by induction that supp A’a; < {o € Z* : |||, <wm*/*}
for some constant k independent of k = 1,2,... . For any fixed o € Z°, let
Ti=Tw0) =27 "M "o—suppA’a;), ie, I denotes the support
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of A”ay(a — M-). Then, the cardinality of I'; satisfies
#ro</'m*,  k=12,...,

where «’ is a constant. For |u| =mn¢ + 1 and |y| = ny + 2, it follows from
Holder’s inequality that

Whu@)] = |3 B Ao — Mﬁ)‘
Belk
1/q 1/p
< (Z IIﬁIISS’*"") (Z A7 ag(o — Mﬁ)|p>
Pel’y pel’y

< eyt Aray]),

for some constant ¢; dependent of « but not of k = 1,2,..., where ¢ satisfies
1/p+ 1/q = 1. This together with (2.13) and (3.9) gives us that ‘Ayohl,#(oc)|
tends to zero for £ — oo, in contradiction with (3.8). This completes the
induction process, thereby proving the assertion. 1

Proof of Theorem 2.3. The necessity of (2.13) for convergence of the
cascade algorithm has already been shown in Theorem 3.2. In order to show
sufficiency, we need to prove that conditions (1) and (2) of Result 2.1 follow
from (2.13). By Lemma 3.3, the sum rules of order n+ 1 are satisfied.
Further, by (2.6) and the definition of ¥, in (2.7) we have for |u| =n + 1

: L 1/k _ 1: k qusyl/k
Jim (|4 )" = lim (L7 A" = p,({ily, e € € EY)

(see [11, Theorem 2.5]). Hence, the assertion follows. &

Finally, we obtain

COROLLARY 3.4.  Assume that the sequence (Qf¢q,)i>, is bounded in
W;([R{“)—norm. Then, the cascade algorithm corresponding to mask a converges

for every ¢ € W,_y in W;”I(RS)-norm.

Proof. Comparing (3.6) with (2.13) (for n — 1 instead of n), the assertion
directly follows from Theorem 2.3. 1§
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4. PERTURBATIONS OF REFINEMENT MASKS

In this section, we shall show the convergence of the cascade algorithm
corresponding to a slightly perturbed refinement mask. Moreover, the
perturbation of the refinable limit function affected by the perturbation of
refinement mask is studied.

THEOREM 4.1. Let Q be a finite set of Z°. Assume that the cascade
algorithm corresponding to a € €(Q) converges for every ¢ € W, in WI’,’(RS)-
norm. Then there is a positive number 1 such that, for any b € €(Q) satisfying
(1.3), sum rules of order n+1 and |la— b||;<n, the cascade algorithm
corresponding to b also converges for every ¢ € Wy, in W;’([R{S)—norm.

Proof. Recall that K is defined in (2.8). By assumption on a, it follows
from Result 2.1, that

lim [J.7* VE = inf ||./* Ve <l p,
By ol = b 17y ol

Hence, there exists an integer k> 1 and some positive ¢ such that

max E |Ag, - - - Ay, v]|? < mC/sH  p=0kp,
UEV"‘Elf(:Kl) &l,....6kEE

Clearly, for this &, there is an # > 0 satisfying that for any b € £(2) with
lla — b||; <n, we have

Do My Aoy = By By |7 <m0,
Note that ¥, n€(K) is an invariant subspace of any 4, and B, ¢€E.
Consequently,

‘ —n/s+1/p—t)k
nax N (Ao Jo = (B By ol <m0
lloll=1 £yt EE

It follows from the triangle inequality that

max B. ---B. vllf <m(—”/5+1/p—t1)kp 41
veV,nU(K) Z I Ek &1 I , (4.1)
lloll=1 €1,k EE

where the positive number ¢, is defined by 2m—"/sT1/p=0kp — py(=n/s+1/p=t0kp
Equality (2.2) tells us now

pp({B(;|Vnm[(K) S E})gm(’"/ﬁl/!ﬁh) <m*n/s+l/p,

and the assertion follows from Result 2.1. 1
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So, in fact, the convergence of (Qhd),, follows readily from the
continuity of the joint spectral radius p,.

Our goal is now to estimate the perturbation of the limit function in terms
of the perturbation of the mask, i.e., we want to show that

”Q/;(l)o_Qid)OHW;(R‘V)SC”a_le» k= 1929"'9

where a, b meet the assumptions of Theorem 4.1. We use the initial function
¢ defined in (3.4). Then, choosing g = Q%, — Ofdy,. the second
inequality in (3.5) implies that

> I Qo — D Qb ll, <em™*PEN ||k — 4By,

lul=n |ul=n

Hence, we have to estimate the norm ||4"a; — 4"by|, for |u| = n.
In order to obtain this estimate we first need

LEMMA 4.2.  Assume that the masks a, b € £o(Z°) satisfy (1.3) and the sum
rules of order n+ 1 in (2.9). Then for any v € V,_,, we have

(B, —A,)veV, VeeE.

Proof. We claim that for any « satisfying sum rules of order n + 1 and
any p € I1,, there is a polynomial ¢g € I1,,_; such that

> p(—wa(e + Mo — )

oeZ’

=pM Y e—P)+qe—p) VeeE and VpeZ'. (42)

In fact, it follows from Taylor’s formula that

—1 _
pen =% W(_M’I(Ma - B+e)t.
lul<n '
Therefore,
Z p(—a)a(e + Mo — fB)
aeZ’®
-y w > (=M (Mo — B+ &) a(e + Mo — ).
ll<n ' uel”

Note that g satisfies (1.3) and (2.9), i.e., we have >, a(e+ Mo — ) =1 and

Y (M (Ma—fte)aet+ Mo~ p) =3 (-0)'aMa),  |ul<n,

oel’ oeZ’
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for all ¢ e E and f € Z°. Hence, we obtain

> p(—wale + Mo — )

aeZ*

=pM~ (- ) + Z Z w(_@ua(m)

|
o<lul<n aeZ* K

This proves (4.2). Using (4.2) for b instead of a we get a polynomial g € IT,,_;
such that

Zp(—oc)(b(s—kMoz—ﬁ)—a(e+Mo<—ﬁ)) =ge—p) VeeE and VfeZ'

oeZ’

For any v € V,_; and for any p € II,, it follows by (2.4) that

ST 0B — 4@ =Y gle—Pu(f)=0  VeeE.

aeZ’ pez’

The proof is complete. 1§

LEMMA 4.3. Suppose that Q c 7° is a finite set and that the cascade
algorithm corresponding to a € {(2) converges for every ¢ € W, in W;}(R’)-
norm. Further, let b € €(Q2) satisfy (1.3), the sum rules of order n+ 1 and

lla — bll; <n, where n is chosen such that the assertion of Theorem 4.1 holds.
Then, there is a positive number ¢ such that we have

4" ax — 4Bl , < clla — bllym™"<TYPR Y|y =n  and k=1,2,...,

where c is independent of b and k.

Proof. Let K be given in (2.8). By (2.6) and the equality

By - By — Ay - Ay = Z B - 'BE,M(BS_/ o A?f)Asj—l Ay,
=1
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we obtain

(b — ax)=vll,

1/p
= ( Z Z |BlIk o 'Bz:l U(V) - Az:k o 'Az;1 U(V)|p>

..... eeE  yek

k 1/p
z( S Y. wa,;,A;,)A,m..-Az,.,v(«/)w) ,
&1

J=1 \él,es el yeK

where we have used that by Lemma 2.2 there is some integer ky > 0 such that
both 4,, ...4.v and B,, ...B, v are in {(K) for all k= k.
Thus,

k 1/p
(b — ag) * ]l , < Z( > fk--~Bw(Bg/Ag)Ag,.l---Aglvn;) :
&1

j=1
(4.3)

Let |u| = n. Note that [|4“a;_ 1||P Z” o e e ASIA”(SHP Hence,
by (3.6) in Theorem 3.2, there is a constant ¢1 > 0 such that for any j

Z 14, | ,__ASIAu(;”Z<Clm(fn/s+1/p)(/fl)p. (4.4)

Eleens€j 1 EE
On the other hand, from 4" € V,_; and Lemma 4.2 it follows that
(By, — Ay ), -+ A A0 €V, Ver,..., g €E.

Moreover, by Theorem 4.1 we already know that the cascade algorithm
corresponding to b converges in W;}(R‘Y)-norm and by (4.1) there are a
positive number #; and a constant ¢, such that

Z HBsk o 'Ba/+1(Ba/ - Aa},)ij,l o 'A£1AH5||§

&4 15k EE

<ch(fn/erl/pftl)(kfj)pH(Bgl *A::,)Asz,-,l "'AmA”5IIZ Vk > j.
This together with (4.4) implies by ||B;, — Az:,»||§< lla — b|7

Z Z ”BEk o 'B§;+|(B£,- - AE_,)AL'/'—] o 'AEIA”5||£

E15es€j 1€ €j41,..,80EE

L e3mH Pt k= (=nfs+1/ p)G=Dp) | — b||?,
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where ¢3 is some constant which is independent of b and k. It follows from
(4.3) that

k
b = @)+ 479, <3/ Plla— pllym 7 HPEDN g =2,
j=1

Hence, the assertion follows. 1
We are now ready to present the main theorem of this section.

THEOREM 4.4. Let Q be a finite set in 7°. Assume that the cascade
algorithm corresponding to a € €(Q) converges for every ¢ € W, in W;(RS)-
norm. Then, there exists a positive constant 1 such that, for any b € {(Q)
satisfying (1.3) and the sum rules of order n + 1 with ||la — b||, <, the cascade
algorithm corresponding to b converges for every ¢ € W, in W;’(RS)-norm.
Moreover, there exists a constant c, which is independent of b and k, such that

1Q5b0., — Osboullmyy<clla —blly,  k=1,2,..., (4.5)
where ¢, is given in (3.4). Consequently, we find for the limit functions
1¢a — Pollwawy <clla = blly. (4.6)

Proof. By Theorem 4.1, we know that for b € £(Q) satisfying the sum
rules of order n+ 1 and with ||la — b||<#n for some suitable y the cascade
algorithm corresponding to mask » converges for every ¢ € W, in WI’,’(RS)-
norm. Therefore, ¢, € W/’](RS). Since ¢, € W,, the cascade algorithm
converges for ¢, for a and b, i.e., we have

o o
lim (1050, — Ballwgy = lim (G50, — dyllwyey = 0.

Inequality (4.6) follows now from (4.5).

In order to prove (4.5), we appeal to Theorem 3.2. Put 4 = A*a;, — A*b; in
(3.5). This corresponds to g = Q% ,, — Os¢hg,. Then the second inequality
in (3.5) yields for some constant ¢; and for k =1,2,...

> ID“(Qhebo,y = Qo Il <cm™>~VPES 7 Ay — 4Dy .

lul=n |ul=n

Together with Lemma 4.3, it in turn implies

S ID Oy, — O, <calla bl k=12..., (@7

|ul=n

where ¢, is some positive number being independent of 4 and &.
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As shown in Corollary 3.4, the cascade algorithm corresponding to a also
converges for every ¢ € W,y in W;'(RS)-norm with n’ <n. Replacing n with »’
in (4.7) and then taking the sum of the resulting inequalities we obtain
4.5). 1

We obtain the following corollary.

COROLLARY 4.5. Let Q be a finite set in Z°. Suppose that ¢, is a refinable
function in W,’](RS) corresponding to mask a € {(Q) and the shifts of ¢, are
stable. Then there are positive constants n and ¢ such that, for any b € £(Q)
satisfying (1.3), the sum rules of order n+ 1 and ||a — b||, <n, the refinable
distribution ¢, is in W;}(RS) and satisfies (4.6).

Proof. By the stability of the shifts of ¢, the cascade algorithm
corresponding to a converges on W, in W[’}(Rs)-norm. This conclusion has
been established in [19] for p = 2. The method works for general p>1.
Now, using Theorem 3.2, the proof is analogous to that of Theorem 4.4. 1

Remark. The proof of estimate (4.5) is strongly based on the second
inequality in (3.5). This inequality in turn has been shown for our initial
function ¢, in (3.4) using relation (3.2). Since not every function f in W,
satisfies the relation D*f = A*g for some suitable g as in (3.2), the
arguments in this paper fail to work for a general initial function in W,. This
difficulty has been overcome recently by Han [9]. In this paper, he
established inequality (4.5) for any initial function in W,.
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